
GUn"" State.f~\ Department of~l Agriculture

Statistical
Reporting
Service

Statistical
Research
Division

SRS Staff Report
Number SF&SRB-89

January 1986

An Optimum Allocation
Algorithm for
Multivariate Surveys
James Bethel

AN OPTIJ(tJJ(AlLOCATION AI..GORITIDIFOR IlULTIVAIIA1E StJKVEnS. By James Bethel,
Statistical Research Division. Statistical Reporting S,rvice, U.S. Department
of Agriculture, Washington, D.C. 20250. Staff Report No. SFtSRB-89 •.

ABS'ItiCT

Optimal sample allocation, when multivariate data are collected, is a diffi-
cult problem and can be time-consuming even on large computers. This paper
developes and presents a relatively simple algorithm which is readily pro-
grammable and which appears to work very efficiently. converging quickly even
on small computers. A complete description of the algorithm is given, along
with a proof of convergence, and a discussion of methods used by the author in
implementing the algorithm. PAS~AL source code for a progr~ written by the
author is provided.

Keywords: Convex programming, sample design, stratified sampling.

-------------------------.-- ----.----------------------------- This paper was prepared for limited distribution to the research -
- community outside the U.S. Department of Agriculture. -

-------------.---------.------------------.-.---------------.-------

Summary

Introduction

Hi

1

The AIBOd thm

Convergence of the A1gor i thm

2

5

...
IaplementinB the AIBorithm

Concl uaion

13

14

References

Appendix

... 15

16

- iii -

SDtiRy

Optimum allocation is a useful. if not invaluable. tool in sample design.
If there is only one variable of interest. the problem is easily solved. When
more than one variable is being observed. there are no closed-form optimum
solutions and some form of iterative computer algorithm must be used. Such
programs are available but generally only on large computer systems (such as
Martin Marietta) which are somewhat expensive to use. especially when compared
with programs that run on small in-house computing equipment. Specifically.
this algorithm is recommended as an efficient program for the Statistical
Reportins Service to use in multivariate optimum sample allocation problems
using an in-house computer.

This paper documents a program developed by the author to solve such mul-
tivariate problems. The paper is written at a technical level and is not
intended for general dissemination. The algorithm on which it is based is
simpler and seems to be more efficient than others designed for this purpose.
In particular. the program runs well on a Zilog System 8000. a microcomputer
which is available to many statisticians in the Statistical Reporting Service.
The algorithm is simple enough that the program can be easily adapted to solv-
ing many different types of allocation problems. The author used the program
extensively in evaluating sample designs for the Integrated Survey Program
(ISP). the work which originally motivated the developement of the algorithm
(Bethel. 1985). The program has also been used for studying multiple frame
estimators and for allocations involving double-sampling regression estimators
(WUti am s • 1986) •

In this report. the algorithm is described and shown to converge to the
optimum solution. The convergence is automatic. in the sense that the start-
ing values are picked by the algorithm and the convergence does not depend on
the values chosen. There are. however. certain parameters in the program
which are discussed with some informal motivations given for the values used
by the author. Finally. PASCAL source code is given for a program written by
the author to implement the algorithm.

AN OPTIJlU)(ALLOCATION ALOOIlI11Dl FOR IlULnY ARIATE SUJCVHYS

.1•• es BetJael

nmwDUCTION

The problem of optimal sample allocation for multipurpose surveys can be
viewed more generally as a problem in convex programming and, as such, there
are many ways to obtain a numerical solution. Huddleston, Claypool and Hock-
ing (1970) have applied a nonlinear programming method devised by Hartley and
Hocking (1963) to this problem, and Kokan (1963) has discussed some standard
nonlinear programming techniques with respect to optimal allocation. While
these and other, more general methods are available, most of them are diffi-
cult to program and computationally burdensome, and not all are guaranteed to
converge. In this paper, an algorithm is developed which is relatively simple
to program and which converges quickly, even on small computers.

Consider the case of stratified random sampling. Suppose it is required
that the j-th variable, 1 i j i p, satisfy

L 2 2 1 1L Wi Sij (- - --) ivj•
i=1 ni Ni

Let

...!..
D.
1

otherwise.

Assume the cost function

C

(Fixed costs are irrelevant since these do not affect the minimization prob-
lem.) Now the problem reduces to minimizing

.ubject to the constraints-

- 2 -

C = C(x) (1)

where

1 i j i p (2)

L}:
i=1

The di.cussion will be limited to this allocation model, .ince Kokan
(1963) .how. how it can be adapted to cover virtually any sampling situation.
The algorithm i. described in the next .ection. The proof of convergence,
which i. presented in the third section, i. the main focus of this paper, but
it is not essential for the discussion of applications. PASCAL code for imple-
menting the algorithm is given in the Appendix.

Consider this informal argument: For fixed values of k, the set

forms a convex hyperboloid, while the set

-Ideally, one would also want

1 i i i L.
An automatic method for incorporating this constraint into the
problem has not been developed, but the method of Cochran (1977),
p. 104, can easily be u.ed.

- 3 -

(4)

forms a convex polygon below Sk. As k increases, Sk moves downward toward the
upper boundary of the feasible region F and the point where these sets meet is
the optimal solution to (1) and (2). This is depicted in Figure 1.

For any hyperplane

H = (x: a'x = 1). (5)

[okan and [han (1967) show that Hand 8k are tangent (for some suitable k) at
the point t, where

t =
i otherwise. (6)

Consider the aj = Caj1,aj2, ••• ,ajL)', as defined by (2). Let Rj =
(x: aj'x = 1) and suppose that tj = (tj1,tj2, .•• ,tjL)' i. the point where Rj
and Sk are tangent. If tj e F, then, I' [okan and [han (1967) show, tj is the
optimal solution to (1). Unfortunately, this is rarely the case.

Suppose that H = {x: I'X = I} and t = t(H) is the point where, for some
suitable k, H is tangent to Sk. The cost CCt) can be written as a function of
the coefficients ai:

L :J.C(t) = } (7)
i=l ti

L
[1/2

L
1/2]= } ci 1 (ci ai) 1 (ai } (ci ai))

i=l i=l

L
)1/2

L
)1/2= } (ci Ii } (ci aii.,l i=l

[L)1/2 f= } (ci aii=l

- 4 -

For convenience write

6(H) = C(t(H» = C(t).

The algorithm begins by selecting one of the Hj as an initial value
H(l) = {x: .(l),x = I). For example t.ke

H(l) = H1·

Now choose H(2) to s.tisfy

(8)

(9)

In a sense, H(2) is the convex combination of H(l) and H which maximizes G.
() (d (2)To find H 3 • repeat this process with H3' replacing ai with ai and &2i

with a3i in formula (9).

(n+l)In general choose H to satisfy

(10)

where j = n+l (mod pl. For the purpose of this discussion. one iteration willn
consist of calculating H(l) ,H(2) •••••H(P).

- s -

CONVERGENCE OF nm ALOOIlITBJI

The algorithm defined by (10) has the property that it is guaranteed to
converge. regardless of the initIal starting value. (Notice that the ordering
of the Hj has not been specified in any way, so that the choice of HI for the
starting value was arbitrary.)

•Suppose that x satisfies

C(x·) i C(x) for all x e F (11)

H· be the hyperplane that is tangent to S • at x·. Kolan and Khan
C~x)

existence and uniqueness of x. Let x(n) be the point

and Ie t

(1967) establish the
where H(n) and S

(n)x
intersect. It will be shown that

lim
n

(n)
x •s::: X •

The proof is based on three results. these are stated now, deferring proof
until after the presentation of the main result.

Theorem 1. Suppose that Pl,P2, ••• ,Pl
that f: D (x: x '"~ YjPj' 1j 10, l
f(z) is a .aximum on D if

n
£ R • with Pi ~ Pj whenever i I

11j s::: 1}~ R is strictly concave.
j, and
Then

f(z) 1f(z + Q(Pj - z»

for all Q £ rO,l] and for each j = 1,2,••••1.

Theorem 2 •

•G(H) i G(H).

Theorem 3.

- 6 -

There exist aj L 0, with L aj ~ 1, such that
j

From (10) it is apparent that the algorithm searches among hyperplanes of•the form {x: ~ ajaj'x = 1}. Theorems 2 and 3 show that B has this form and,
in fact, maximizes cost over all such hyperplanes. Theorem 1 shows that it is
sufficient to search in pairwise fashion, maximizing the convex combination of
the current hyperplane with each of the Bj in succession.

The main result is now proved:

Theorem 4. •x •

Proof: From (10) and Theorem 2

But note that

(12)

v = (N(-l) N(-I) N(-l», It F1 ' 2 ,•••, L

(since then var(Yj) 0) thus. from (11),

G(B·) i C(v) < m. (13)

Therefore G(B(n» is a monotonic, bounded sequence and must have a finite
limit.

Let B be any hyperplane of the form given in Theorem 2, and set
bi ~ ajaj. Notice that the function

- 7 -

G(R) }(C
i
b.)1/2

i 1

is strictly concave. This follows from

2-c s

4(c b)3/2
s I>

o

if r ~ s

othend se.

which implies that the matrix of second partial derivatives is negative defin-
ite.

It now follows easily from Theorems 1 and 3 that

lim G(R(n» ~ max {G(H)}n a
•G(H). (13)

Since a concave function is being maximized over a convex set there is a
unique maximum (see Avriel. 1976. p. 94). thus

and the result follows.

The rest of this section is given to the proofs of Theorems 1-3. It will
be useful to establish some basic facts concerning convex functions. First of
all, if f is a strictly convex function then. by Taylor's theorem

{(x) - fey) = (x - y) 'Vf(y) + e'Qe (14)

(by strict convexity f has first and second partial dertvatives). Furthermore
the matrix Q is nonnegative definite so that

- 8 -

f(x) - fey) 1(x - y) 'Vf(y).

It also follows from (14) that if z = ax + (l-a)y, where 0 i a i 1, then

2fez) - fey) = a(x-y) 'Vf(y) + O(a).

OS)

(16)

Finally. note that the hyperplane tangent to f(x) at a point c has the
equation

y = f(c) + (x-c) 'Vf(c).

If it is required that y = k = f(c) then the plane tangent to the plane
Sk = Sf(c) has the equation

x'Vf(c) = c'Vf(c).

In particular.

(17)

x'VC(x) (18)

Define h by

o· = {x: h'x = I}.

Then

(19)

. -1[c1h = - (C(x» --.'xl
.' ... ' (20)

Theorem 1. Suppose that Pl.P2 •••••Pk
that f: D = (x: x = 1 YjPj' Yj 1o. 1
fez) i. a maximum on D if

ne R • with Pi ; Pj whenever i ; j. and
1Yj - 1}~ R is strictly concave. Then

- 9 -

fez) 1f(z + a(Pj - z»

for any a t [0,1] and for each j ~ 1,2, ••••k.

Proof: Using Taylor's theorem

2f(z + a(Pj - z» ~ fez) + a(Pj - z) 'Vf(z) + O(a).

Combining (21) and (22). and letting a tend to 0,

(21)

(22)

(23)

for each j = 1,2, ••••k. Suppose that n £ D. Since -f is strictly convex,
combining (IS) and (23) yields

feu) - fez) i (u - z) 'Vf(z)

i 0

and the result follows.

Theorem 2. For any set of the form H = Ix: L ajaj 'x .= 1, aj 1O. }:aj 1) •

•G(H) i G(H).

Proof: Let t be the intersection of Hand Sk' Note that C is strictly con-
vex, so that, us ing (1 S) •

- 10 -

•••G(8) - G(8) = C(x) - C(t) L (x - t)'VC(t).

Notice that since 8 is tangent to C at t the equation for 8 is liven by

x'VC(t) = t'VC(t)

so that

From (18)

t'VC(t) s -C(t) < o.

But notice that

(24)

(25)

wh ich y IeIds

1 L ~ a a 'x.j j

It follows that

= x·'VC(t).

G(8·) - G(8) L (x· - t)'VC(t) L O.

Two preliminary results are necessary to prove Theorem 3. The first is
proved in Kokan and Khan (1967). The second, due to Kuhn and Tucker (1951).
is one of the fundamental results in nonlinear programming: this version is
slightly restated from Theorea 4.39 of Avriel (1976).

Lemma 1. For some subset J of {1.2,•••,p}

- 11 -

•x

Lemma 2. Suppose that f and Il.12 ••••• lp are real-valued and differentiable
functions on Rn• where f is convex and the gj are concave. Let

F ~ {x: 8j L o. I ~ j ~ pl.

nSuppose that there is v e R such that

for j I: 1.2 •••••p. If % latisfies

then there exist Aj L 0 for which

and

for j I: 1.2 •.•••p.

Theorem 3. There exht aj L O. with 2 aj I: 1. luch that
j

Proof: Suppose that

- 12 -

H· = {x: h'x ~ I}.

In Lelllma2 take

•f(x) - (-C(x »C(x)

v = (N(-I)N(-I) N(-I»,
1 • 2 '···'-L

It follows that there exist Aj L 0 such that

and

- 1) 0, j = 1,2••••p.

•Suppose that x a J as in Lemma 1. If j is not in J then

•aj'x - 1 < 0

which implies that Aj = O. It foilowl from (20) that

But if j 8 J

•1 = h'x

h =

•then aj'x = 1, thus

•= ~ A a 'xjaJ j j

.., ~ A
jaJ j

The result follows by takin.

ifjaJ

otherwise.

- 13 -

As has been shown, the algorithm converges for any starting value H(l).
but. intuitively. it .akes sense to .aximize C(H(j», since x(l) should be as
close as possible to F. Thus take

where

for all j. Since

is concave in a, a direct search for the maximum on rO,ll can be carried out.
This was accomplished by using a small positive value ~ and finding

.ax fg(0),g(~),g(2P), •••• I(k~), •.•,8(1»).

This was done by starting with g(O) and stopping when

I(k~)1I«k+l)~).

This is not as inefficient as it may appear. Even on problems with .any con-
straints, there are usually only two or three which determine the solution;
that is, most of the constraints will not be searched since any value P > 0
results in lowering the COlt. Also, the value of ~ which maximizes I is usu-
ally quite small and almost al.ays less than .S. Therefore this searching
method wastes little time learching over unneccessary constraints which are
and does not require .any steps to find the optimal p, since this value is
small.

- 14 -

In order for convergence to occur, p must be decremented. This was done
at each iteration. that is, after finding

-1where k = O,I, ••• ,[P], for j = 1,2, ••• ,p, and p was decremented and the pro-
cess was repeated until the convergence criterion was satisfied. If P is
decreased too quickly then an excessive amount of time will be spent on the
search to find (26). If it decreases too slowly, too many iterations will be
necessary to obtain convergence. It seemed that initially taking p = .OS and
decreasing it by 10\ on each cycle worked well.

The convergence criterion used was the maximum relative constraint viola-
tion. For example, if the required coefficient of variation is y, setting a
convergence criterion of a would mean that all CV's must be no larger than
y(1+a) •

CONCLm IONS

The algorithm provides an alternate program to the Agency's Huddleston,
Claypool and Hocking procedure (1970) to obtain optimum solutions to mul-
tivariate problems. The motivation for the work was to provide a procedure
whic~ could be executed using an in-house micro-computer. There was no direct
effort made to compare this algorithm against any other algorithms. Modest
use of the program does indicate it is reasonably efficient. CPU time was 12
seconds for an optimal allocation problem (Bethel, 1985) which compares to
other projects of similar size running at less than 30 seconds CPU time.

It is recommended this program be used by the Agency as an alternative to
optimum sample allocation processing on Martin Marietta. This method is cost
effective because it runs on an in-house machine. The method also converges
quickly. Further research is suggested to evaluate the CPU run time, optimal
solution, and robustness of this algorithm against the standard algorithm
used by the Agency.

- 15 -

REFERENCES :

Avriel, M. (1976). Nonlinear Progr&mming: Analysis and Methods. Prentice-
Hall, New Jersey.

Bethel, J.W. (1985). Sample Design for the 1985 ISP/JES. SRS-USDA Staff
Report No. 86.

Cochran, W.G. (19;7). Sampling Techniques. John Wiley and Sons, New York.

Hartley, H.H., and Hocking, R.R. (1963). Convex Programming by Tangential
Approximation. Management Science, 9. 600-612.

Huddleston. H.F., Claypool, P.L., and Hocking, R.R. (1970). Optimum Sample
Allocation to Strata Using Convex Programming. App. Stat. 19, 273-278.

Kokan. A.R. (1963). Optimum Allocation in Multivariate Surveys. J. R.
Statist. Soc. A, 126, 557-565.

Kokan, A.R., and Khan, S. (1967). Optimum Allocation in Multivariate
Surveys: An Analytical Solution. J. R. Statist. Soc. B, 29, 115-125.

Kuhn, H.W., and Tucker, A.W. (1951). Nonlinear Programming. Proc.
2nd Berkeley Symp. Mathematical Statistics and Probability.

Williams, R.L. (1986). S~ple Designs for Panel Surveys of Agricultural
Production. SRS-DSDA Staff Report No. 93.

- 16 -

In thil lection PASCAL code for iaple.entin, the al,orith. il ,iyen. The
pro,r~ hal three lubroutine •• the fir.t findl the inter.ection of • hyper-
plane with the lurfac. Sk: the .econd findl the lar,elt r.latiye conltraint
yiol.tion a'lociated with. ,lyen allocation: the third find. the co.t '1Ioci-
ated with the point Where Sk and a ,iyen hyperplane are tanlent. Th. main
loop firlt findl the hyperplane with the lar,'lt COlt, then imple.ent. the
routine delcribed in ••ction 2.

pro,r •• allocat (input, output):

conlt
.hel - 100:
Ihe2 - SO:

type
vector - array[l •••iz.l] of r.al:
matrix - array[l ••lizell of array[l ••lize2] of real;

var
x,y,eplilon,.rror,beta,coltl,co.t2,lambda : r.al:

cnlt : matrix:
planel,plane2,pointl,point2,colt : yector:
iteration,r,i,j,k,nltrata,nvar : inteler:
rank: array(l ••lizel] of inte,er:

(.----------------------.------------.)
(. PROCEDURE INTERSECT takel an inteler (Which identifies .)
(. a conltraint hyperplane) and return. the point of .)
(. interlection with the COlt lurface .)

procedure interlect (plane : y.ctor:
var inter: yector):

yar
int
t
w :

inte,er:
real :
vector:

beain
t :- 0:
for int :- 1 to nltrata do
belin
w(int] :- Iqrt(colt[int].plane[int]):
t :- t + w[int]

- 17 -

eDd:
for iDt :- 1 to D.trata do

if plaDe[iDt] <> 0 theD iDter[iDt] :-
w[iDt]/(plaDe[iDt]·t)

el•• intediDt] :- 1.0£+10
eDd:

(.----------------------.-----------------.--.)
(. PROCEDURE "CHEC~" check. to .ee how near a liveD point .)
(. i. to the fea.ible re,ioD. The ,lobal variable "error" i••)
(. let to the laraelt relative cODltraiDt violatioD ••)

procedure check (v~c : vector):

var
.ax,t : real:
i, j : iDteger:

be,in
.ax :- 0:

(. For each cODltraint •••

j :- 1:
while j <- nvar do

belin
t :- 0:

(•••• fir.t fiDd a'x aDd 1-a'x/b, which il the error•

for i :- 1 to Dltrata do
t :- t + vec[i]·cDlt[i,j]:

t :- t-1:
if t > .ax theD .ax :- t:

(. Now .ax is the laraelt ablolute cODltraiDt violation.

j :- j + 1:
eDd:
error :- .ax:

eDd:

.)

.)

(.---.)
(. PROCEDURE "FINDCOSTW fiDdl the COlt allociated with plaDe p••)

procedure fiDdcolt (p : vector:
var tc : real):

var
count

be,in
tc :- 0:

iDteler:

- 18 -

for count :- 1 to nltrata do
to :- tc + Iqrt(colt[count)·p[count):
to: - Iqr<tc)

end:
(.--.-.-,----------------------------------.)
(. MAIN LOOP. Firlt the iteration variable i••)
(. initialized. and then the data il entered ••)

be.in
iteration :- 0:

writeln ('Enter number of Itrata, number'):
writeln C'of variablel. and eplilon: '):
read Cnltrata.nvar.eplilon):

(. Firlt the COlt data for each Itratua il entered.

for i :- 1 to nltrata do
read CCOlt(1):

C. Now the "variance co.ponentl" are read ••)
C. thele are the aCi.j) in formula (2)••)
C. Thele are read by variable. with a row for each one••)

for j :- 1 to nvar do
be.in

for i :- 1 to nltrata do
read Ccnlt[i.jJ)

end:
(. The firlt Itep il to find the hyperplane with the .axi.ua .)
(. value GCR) Cie•• lar.elt COlt) ••)

for j :- 1 to nvar do
be.in
for i :- 1 to nltrata do

plane2[i) :- cnatU.j):

(. Note that j indicatel the conltraint hyperplane and .)
(. ·plane2· il the allociated plane. the firlt Itep recordl .)
C. the COlt of the firlt plane: .)

findcolt Cplane2.coltl):

if j - 1 then
be.in
r :- 1:
x :- cOltl

end

C. Now any plane with hiaher COlt replacel the previoul one ••)

elle

- 19 -

if cOltl > x then
belin

x :- cOltl;
r :- j:

end;
.nd;

(. Th. followin, letl the initial valu.1 for the loop:

cOltl :- x;
for i :- 1 to nltrata do

planel[i] :- cnlt[i,r];
interlect (planel,pointl);
check (polntl):

.)

(. The iteration belinl here. The procedure il to tilt .)
(. planel toward each conltraint-plane in luccellion. each .)
(. tiae choolinl the anile which maxiaizel the COlt .)
(. allociated with the plane. Beta il a parameter which .)
(. determinel the Irid of the line leach for the optiaum .)
(. anile. AI the iterationl increale, beta il decre'led ••)

beta :-= 0.056:

while error > eplilon do
beain

iteration :-= iteration + 1:
beta :- 0.9.beta:
for j :- 1 to nvar do

be,in
x :- 0;
repeat
y : "" co I t1 ;
x :-= x + beta;
for i :- 1 to nltrata do

plane2[i] :- x.cnlt[i,j]+(l-x).planel[i];
findcolt (plane2,colt2):
if cOlt2 > cOltl then cOltl :-= 001t2;

until cOlt2 <- y:
if x > beta then
be,in

x :- x - beta:
for i :- 1 to nltrata do

planel[i] :- x·onlt[i.j]+(I-x).planel[i];
end:

end;
if iteration> 25 then writeln ('Warnin,: iteration -',iteration):
interlect (planel,pointl);
check (pointl):

end:

(. We are finilhedl All that r~ainl il to tidy thin,1 up a .)
(. little and then report the relultl ••)

- 20 -

writ.ln (' '):
writ.ln ('Proaraa output: '):
writ.ln (' '):
x :- 0:

for i :- 1 to nltrata do
beain

rant(i) :- round(l/pointl[i):
x :- x + cOlt(i)·rant[i):

.nd:
writ.ln ('Nuaber of iterationl -',iteration):
writ.ln ('the opti.al COlt il',coltl):
writ.ln ('Thia 101ution latiatiel the CV conatraintl to within',.rror):
writ.ln ('An approxi.ately optiaal 101ution il the allocation'):
for i :- 1 to nltrata do

writ e (r au [i]):
wri t.la:
writ.ln ('The coat of thil 101ution il',x):

end.

*U.S. GOVERNMENT PRINTING OFFICE; 1 9 8 6 - 4 9 0 - 9 2 0 /4 0 0 3 7

	page1
	page2
	titles
	-------------------------.-- ----.----------------------------
	-------------.---------.------------------.-.---------------.-------

	page3
	titles
	2
	...
	...

	page4
	page5
	titles
	nmwDUCTION
	...!..

	images
	image1
	image2
	image3

	page6
	titles
	1 i j i p
	L
	1 i i i L.

	images
	image1
	image2
	image3
	image4
	image5
	image6

	page7
	images
	image1
	image2

	tables
	table1

	page8
	titles
	- 4 -
	() (d (2)

	images
	image1
	image2

	page9
	titles
	- s -
	•
	•
	•

	images
	image1

	page10
	titles
	•

	images
	image1
	image2
	image3

	page11
	titles
	o

	images
	image1
	image2

	page12
	titles
	(19)
	. -1[c1
	.'
	.' ... '
	(20)

	images
	image1
	image2
	image3

	page13
	titles
	i 0
	•

	images
	image1
	image2
	image3
	image4

	page14
	titles
	•••
	1 L ~

	images
	image1
	image2

	page15
	titles
	•

	images
	image1
	image2
	image3
	image4
	image5
	image6

	page16
	titles
	•
	v =
	•
	•
	•
	.., ~ A

	images
	image1
	image2
	image3
	image4
	image5

	page17
	images
	image1
	image2
	image3
	image4

	page18
	titles
	-1

	images
	image1

	page19
	page20
	titles
	(.----------------------.------------.)

	images
	image1

	page21
	titles
	(.----------------------.-----------------.--.)
	j : - 1:
	.)
	.)
	(.---.)

	tables
	table1

	page22
	titles
	(.--.-.-,----------------------------------.)

	page23
	titles
	.nd;

	page24

